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Abstract 

Underwater, Passive Target tracking,for a moving observer, observation will be a critical task. Modified 
Gain Extended Kalman Filter (MGEKF) developed by Song and Speyer [3] was proven to be suitable algorithm for 
angles only passive target tracking applications in air. In this paper, this improved MGEKF algorithm is explored for 
underwater applications with some modifications. In underwater, the noise in the measurements is very high, turning 
rate of the platforms is low and speed of the platforms is also low when compared with the missiles in air. These 
characteristics of the platform are studied in detail and the algorithm is modified suitably for tracking applications in 
underwater. Monte-Carlo simulated results for one typical scenario is presented for the purpose of explanation. From 
the results it is observed that this algorithm is suitable for moving observer in underwater passive target tracking 
using angles only measurements. 
 
Keywords: Kalman filter. 
 

Introduction
In the ocean environment, an observer monitors 

noisy sonar bearings and elevations from a radiating 
target. These measurements are extracted by an observer 
moving in a straight line and the observer processes these 
measurements to find out target motion parameters-Viz., 
range, course, bearing, elevation and speed of the target. 
Here the measurements are nonlinear; making the whole 
process nonlinear. However, the modified gain extended 
kalman filter (MGEKF) developed by Song and Speyer 
[3], was the successful contribution for angles only 
passive target tracking applications in air. This MGEKF 
algorithm was further improved by P.J. Galkowiski and 
M.A. Eslam [5].  In this paper, this improved MGEKF 
algorithm is explored for underwater applications with 
some modifications. In underwater, the noise in the 
measurements is very high, turning rate of the platforms 
is low and speed of the platforms is also low when 
compared with the missiles in air. These characteristics 
of the platform are studied in detail and the algorithm is 
modified suitably for tracking applications in 
underwater. 

2 deals with mathematical modelling of bearing 
and elevation measurements. Section 3 describes the 
implementation of  the  filter and section 4 is about the 
the results obtained in simulation. 

 
Mathematical Modeling 

Let a target be at a point P and the observer be 
at the origin, as shown in Fig-1. The measurement vector 

Z, is written as Z=
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Where φσσ    and  B are zero mean, uncorrelated 

normally distributed  errors in the bearing (Bm) and 
elevation ( mφ ) measurements respectively.  

Let the state vector be 

 X x y z r r rs x y z
T

= & & &   (2) 

 The measurement matrix H is given by 
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Horizontal Plane And Bearing Measurements :-  

If the range in horizontal plane is r rx y
2 2+ , 

then the estimated range be $r r rxy x y= +2 2  (4) 

By adding  xyxy r̂  and  r , eqn. (5) is obtained . 

xyxy r̂ + r =   B̂cosr̂+ B̂sinr̂+cosBr+sinBr yxyx  (5) 

adding both sides   B̂cosr+cosBr̂-B̂sinr̂-B̂sinr- yyxx to 

the above equation and after straight forward 
simplification, the following equations are obtained. 
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using (6) and (7) 
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Eqn.(8) can be simplified as 
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 the coefficients of )r̂-r ( xx and )r̂-r ( yy  are  

 simplified and the above equation  is rewritten as  
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Again  eqn. (9 ) is rewritten as  
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Elevation  angle  measurement: 
In the previous section , it is seen that  
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 Similarly  generates 
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After simple trigonometric manipulations, eqn. (9) is 
written as  
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Substituting (13) in (12) 
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Eqn. (10) and  eqn.(14)  are rewritten in matrix form as  
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As true bearing is not available, it is replaced by 
measured bearing in eqn.(15) and obtained eqn.(16) as 
follows. 
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                   Considering  is g also, z and y,x &&& given  by 
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Implementation Of The Algorithm 

 The above mentioned improved algorithm is 
implemented using MGEKF (MGEKF equations are not 
given in this paper due to space constraint. These 
equations are available in [5].)for underwater passive 
target tracking as follows. As only bearing and elevation 
measurements are available, the velocity components of 
the target are assumed to be each 10 m/sec which is very 
close to the realistic speed of the vehicles in underwater. 
The range of the day, say 15000 meters, is utilized in the 
calculation of initial position estimate of the target is as  
X(0|0)=[10 10 10 15000sin Bm (0)sin  φ m(0)  

15000sin  φ m(0)cos Bm(0)  15000cos  φ m(0) ]T 

where Bm (0) and  φ m(0) are initial bearing and elevation  

measurements.  
 
Simulation Results 
 All raw bearings and elevation measurements 
are corrupted by additive zero mean Gaussian noise with 
a r.m.s level of 0.3 degree. Corresponding to a tactical 
scenario in which the target is at the initial range of 
20000 meters at initial bearing and elevation of 0 and 45 
degrees respectively. The target is assumed to be moving 
at a constant course of 140 degrees. Observer is moving 

in a straight line with course of 90 degrees. The results 
have been ensemble averaged over several Monte Carlo 
runs. The errors in estimates are plotted in Fig.2. It is 
observed that this required accuracy is obtained from 400 
seconds onwards and so this algorithm  seems to be very 
much useful for underwater passive target tracking when 
observer is moving, for a moving target.  
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Fig.1. A typical  target observer geometry 
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Fig.2(a). Error in range estimate versus time 

 

 
Fig.2(c). Error in Course estimate verses time 

 
 

 
Fig.2(b). Error in Speed estimate versus time 

 


